A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems
نویسندگان
چکیده
An algorithm is described for solving large-scale instances of the Symmetric Traveling Salesman Problem (STSP) to optimality. The core of the algorithm is a "polyhedral" cutting-plane procedure that exploits a subset of the system of linear inequalities defining the convex hull of the incidence vectors of the hamiltonian cycles of a complete graph. The cuts are generated by several identification procedures that have been described in a companion paper. Whenever the cutting-plane procedure does not terminate with an optimal solution the algorithm uses a tree-search strategy that, as opposed to branch-and-bound, keeps on producing cuts after branching. The algorithm has been implemented in FORTRAN. Two different linear programming (LP) packages have been used as the LP solver. The implementation of the algorithm and the interface with one of the LP solvers is described in sufficient detail to permit the replication of our experiments. Computational results are reported with up to 42 STSPs with sizes ranging from 48 to 2,392 nodes. Most of the medium-sized test problems are taken from the literature; all others are large-scale real-world problems. All of the instances considered in this study were solved to optimality by the algorithm in "reasonable" computation times.
منابع مشابه
Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملAn Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem
The multiple traveling salesman problem (MTSP) involves scheduling m > 1 salesmen to visit a set of n > m nodes so that each node is visited exactly once. The objective is to minimize the total distance traveled by all the salesmen. The MTSP is an example of combinatorial optimization problems, and has a multiplicity of applications, mostly in the areas of routing and scheduling. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Review
دوره 33 شماره
صفحات -
تاریخ انتشار 1991